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A B S T R A C T

Marine calanoid copepods colonize new habitats, and some become invasive. Their fitness, measured by
intrinsic growth rate and net reproductive rate, is partially driven by biochemical processes. Thus, it is a
function of ambient temperature. Biochemical processes may not be approximated well by yearly mean
temperature alone when temperature cycles yearly, largely. Higher order moments may also be important. The
amplitude of yearly fluctuations of monthly and seasonal sea temperatures varies dramatically across the
northern temperate regions. Thus, they can impact the fitness, thereby the colonization potential of copepods
migrating across such region. To investigate this, we derive approximate metrics of periodic (yearly) fitness: the
yearly intrinsic growth rate, and a weighted net reproductive rate. We use them to measure the persistence
and the growth of an Allee-effect free, stage-structured, fast-maturing, small population of invasive copepods
that reproduces year-round in habitats with yearly temperature cycles. We show that the yearly fitness increases
substantially when a population is introduced from a habitat with large amplitude to that with small amplitude
yearly fluctuating temperatures, given that their mean temperatures and other environmental and ecological
factors are constant. The detected range-expansion of the modeled species matches the potential fitness gradient
predicted by the metrics. The study leads to the question whether the gradient of the amplitudes of temperature
between habitats with similar yearly mean temperatures impacts a class of fast-maturating calanoid copepods,
colonizing new habitats, and becoming invasive.

1. Introduction

Marine copepods colonize new habitats across and along the coasts
via human mediated vectors such as ship ballastwater discharge (e.g.,
Cordell et al., 2009; Boltovskoy et al., 2011) and natural vectors such as
ocean currents (Damerau et al., 2012; Gillespie et al., 2012). Human
mediated introductions have accelerated the colonization and invasion
rates (Hulme, 2009; Lockwood et al., 2013), which have potentially led
to changed ecosystem structures, risking ecosystem functions. Ruiz
et al. (2011) have discussed the impacts of non-indigenous marine and
estuary copepods introduced to North America. As copepods are a
major link between primary and tertiary producers in large marine
food webs, in which humans are an end-receiver (Kiørboe, 2008), there
is an escalating concern regarding which environmental and ecological
processes and factors enhance the colonization potential and the
invasibility of copepods in order to manage human-mediated coloniza-
tion (see Bollens et al. (2012)).

It has been shown that life-history traits, such as fecundity,
mortality and maturation rates, of copepods are functions of ambient

temperature (Uye et al., 1983; Kiorboe and Sabatini, 1994; 1995; Liang
and Uye, 1997a, 1997b; Kiorboe and Hirst, 2008). For ectotherms, in
general, Amarasekare and Savage (2011) have shown that ambient
temperature can impact fitness, measured by intrinsic growth rate λ,
which is governed by biochemical processes, whereas Strasser et al.
(2011) have shown a case specific to invasive calanoid copepod
Eurytemora affinis. Rajakaruna et al. (2012) also have shown that
temperatures can determine the potential and the limits to persistence,
growth, and geographic distribution of invasive marine calanoid
copepod Pseudodiaptomus marinus, with respect to their net repro-
ductive rate R0, modeled explicitly as a function of ambient tempera-
ture. Yet, all these models implicitly assume that average ambient
temperature of a habitat is a good approximation to the full system,
while other environmental and ecological factors are assumed to be
constants.

Typically, sea surface temperature (SST) is considered as the
ambient temperature of copepods dwelling in the upper ocean habitats.
The monthly mean SSTs fluctuate periodically (yearly) at varying
amplitudes, as large as 15 °C, in northern temperate regions (data
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from NOAA-ESRL (n.d.)). When temperature fluctuates largely, Savage
(2004) has shown that measuring the rate of change of biochemical
processes on the basis of average temperature is a weak approximation,
thus, incorporating second-order responses are also important.
Therefore, he concluded that one must be extremely cautious as to
which geographic locations one applies such models, as temperature
fluctuates largely in some temperate regions. In line with the theory for
ectotherms by Savage (2004), the fluctuations of sea temperature can
impact the fitness of copepods dwelling in the upper ocean habitats,
thus, their colonization potential and geographic distribution.
Therefore, both λ and R0, calibrated with respect to yearly mean
habitat temperatures, can be insufficient to understand the full system
dynamics of copepod populations in habitats with yearly temperature
cycles. Therefore, to study the impact of the degree (amplitude) of
yearly temperature cycles on fitness, and thereby, persistence, growth
and colonization potential of copepods, we need new metrics of fitness,
measured across the yearly temperature cycles, as opposed to that
assume constant temperature environments.

To test the impact of temperature fluctuations on copepod fitness,
we study the year-round reproducing invasive marine calanoid cope-
pod P marinus, native to Japan, colonizing marine and estuary habitats
around the world (Uye et al., 1983; Rajakaruna et al., 2012; Brylinski
et al., 2012; Jha et al., 2013; Sabia et al., 2015). A class of marine
calanoid copepods has a similar stage-structure (Mauchline and
Mauchline, 1998), and qualitatively similar functional responses of
vital rates, such as, fecundity, mortality (Hirst and Kiørboe, 2002;
Bunker and Hirst, 2004), and generation times (Huntley and Lopez,
1992) to temperature.

The aim of our study is to understand the effect of the amplitude of
yearly (periodically) fluctuating temperatures, or yearly temperature
cycles, at monthly and seasonal scales, on fitness, and thus, the
colonization potential of a small, but Allee effect free, population of
the model-species P marinus introduced to new habitats, and thereby,
to predict their potential geographic distribution, isolating tempera-
ture. To investigate this, we derive metrics that determine the
persistence (stability) and the growth of a population, approximating
fitness, in yearly temperature cycles. Here, we choose P. marinus for
deriving the metrics, because functional dependencies of its vital rate
parameters on temperature, and geographical distribution and coloni-
zation histories, are recorded well in the literature.

2. Model

2.1. Life-history and population dynamics of P.marinus

Copepod Pseudodiaptomus marinus, reproduces year-round, re-
sulting overlapping generations, has 13 life-history stages; eggs, 6
nauplier, 5 copepodite stages, and a reproducing adult stage; with first
nauplier stage commonly disregarded for computations as it lasts only
for few seconds (Uye et al., 1983; Liang and Uye, 1997a, 1997b). This
results in 12 effective stages for our computations. Their stage-
structure is common for a large class of marine calanoid copepods
(Mauchline and Mauchline, 1998).

A general form of a linear, continuous time (t day), population
growth that depends on periodic (yearly) ambient temperature T (°C)
can be written as a system of ODE,

d
dt

T tn A n= [ ( )]
(1)

where n is a vector of the stage-composition of abundances (number),
and A(T(t)) is the transition matrix with time-periodic coefficients with
period tp (year). All notations are given in Table 1. Although Eq. (1) is a
linear system of dimension n, the entries in the transition matrix A are
non-linear functions of temperature T (°C) and T is a non-linear
function of time t (day), and hence entries in A are non-linear functions
of time t. The system is called invasible if the n=0 equilibrium solution

is unstable, and hence the ecological invasibility condition translates
into a mathematical stability condition for the system in Eq. (1). Here,
we intend to study the stability and constraint-free (intrinsic) growth of
a small, but an Allee-effect free population.

The coefficients of the transition matrix A R∈ lxl of P. marinus are
functions of ambient temperature T(t) (°C) (Rajakaruna et al., 2012),
with lxl dimensions. Stage-maturation times (days) of copepods are
Gamma distributed, of which, the shape parameter k, which me-
chanizes the stage-developmental delays, can be approximated by the
integer 3 for copepods, in general (Read and Ashford, 1968; Breteler
et al., 1994), including for P. marinus (Rajakaruna et al., 2012). As
parameter k in Gamma distributed stage-maturation times is equiva-
lent to k virtual sub-stages within each stage in the matrix A(T),
consistent with the theory of linear chain trick in ordinary differential
equation (ODE) systems (Cox, 1967), A(T) can be written with 3 sub-
stages within each stage for P. marinus (see life-history diagram in
Appendix [A]). It gives,
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Here, μi and γi are stage-dependent mortality and maturation rate
parameters (per day), respectively, for each 3 sub-stages in stage i.
Similarly, parameter σ μ γ= +i i i is the total removal rate (per day) of
individuals from each sub-stage, and βs is the average number of eggs
produced by a female (per day) in adult stage s. The proportion of
ovigerous females in the adult population, q, is approximately 0.61 for
P. marinus (Liang and Uye, 1997a, 1997b). Thus, l=sk, where s is the
number of stages, 12, and k is the number of virtual sub-stages, 3, in
each stage i. Note that this system is dynamically equivalent to a
slightly simpler version (see Appendix [B]) with l=k(s−1)−1.

We use the quadratic function μ κ κ T κ T= + +0 1 2
2 to model mor-

tality rates, assuming μ is a concave up function, with high mortality at
both high and low temperatures for P. marinus (as in Rajakaruna et al.
(2012)). Here, κ0, κ1 and κ2 are parameters. Rajakaruna et al. (2012)
also showed that μ is stage-independent, as confidence intervals, given
by the model fitted to distinct stages, overlap with one another. The
Arrhenius function, which assumes mortality rate of ectothermic
species, in general, is exponentially decreasing with decreasing tem-
perature (Gillooly et al., 2001; Savage et al., 2004; Amarasekare and
Savage, 2011), can also be numerically approximated by a quadratic
function. Hirst and Kiørboe (2002) show that mortality rate data of
copepod species, tested at different temperatures, fit to such functional
forms well.

We use the Gaussian function β b T b b= exp[−( − ) / ]s 0 1
2

2 to model
fecundity rate, which is a generic form for ectothermic species
(Amarasekare and Savage, 2011). Here, b0, b1 and b2 are parameters.
This function has the flexibility to fit to fecundity data at any range of
temperatures: increasing (e.g., copepods in tropical and subtropical
waters), or decreasing (e.g. copepods in cold waters), or increasing and
decreasing (copepods in temperate waters), with increasing tempera-
ture (see the patterns of fecundity data in Uye (1981), Sullivan and
McManus (1986), Saiz et al. (1999), Halsband-Lenk et al. (2002),
Gislason (2005), Holste and Peck (2006) and Kang et al., 2011). The
generalized exponentially increasing trend, shown in fecundity rate
data, pooled from a large collection of copepod species experiments, by
Hirst and Kiørboe (2002) and Bunker and Hirst (2004), may turn
Gaussian, had the species been modeled separately (i.e., if species effect
is statistically accounted) and tested within a full range of sea
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temperatures from approximately −2 °C to 34 °C. The logistic type
functional form used by Rajakaruna et al. (2012), which assumes a
ceiling in fecundity rate at higher temperatures, also fit well to the data
of P. marinus.

The maturation rates of P. marinus are given by the Belehradek's
function, γ T α α= ( − 1) /( − )i

b
i i−1 , where, αi for i=0:13 are temperature–

independent coefficients, with α = 00 , and b=1.8 (Uye et al., 1983). The
maturation rate at each sub-stage in stage i is given by kγ T( )i , and thus,
the maturation time of stage i is given by γ T1/ ( )i (Rajakaruna et al.,
2012). Generation times of copepods with respect to temperature can
be generalized for copepods (Huntley and Lopez, 1992), so can be their
inverse functions, yielding the development rates.

2.2. Derivation of metrics of periodic fitness

Eq. (1) cannot be solved explicitly for many forms of A(T(t)), which
is referred to as the “great matrix exponential tragedy” (Moler and van
Loan, 2003), including the one for P. marinus. However, when the
coefficient matrix A(T(t)) is periodic in time, Floquet theory can be
used to show that there exists a unique solution to the initial value
problem (Barone et al., 1977; Klausmeier, 2008). This solution has an
associated fundamental matrix; the monodromy matrix; which is
unique and time-invariant, and whose exponents can be used to
determine the stability and growth of the system (Wang and Hale,

2001). Alternative methods of solutions assume piecewise constant
A(T(t)) with time discretized over the period into intervals (e.g.,
Gökçek, 2004), and also analytical approximations (e.g., Moler and
van Loan, 2003). In essence, all these methods agree with Floquet
theory, and are efforts to transform the non-autonomous system into
an autonomous system. Yet, they do not give explicit solutions that can
be written in the form of a fitness-metric, as a function of meaningful
temperature-dependent vital rate parameters of our interest. The above
solutions can be different from those given by A(T(t)), when T(t) is
replaced by the average temperature of the period, assuming tempera-
ture fluctuations are negligible. As in Rajakaruna et al. (2012), such an
assumption leads Eq. (1) to have an explicit analytic solution. Time-
averaging of coefficients of A(T(t)) also gives the stability condition, but
not the rate of growth of the system (Ma and Ma, 2006; Wesley and
Allen, 2009).

We solve Eq. (1) by piece-wise constant approximation. By doing
so, we assume that quantitative responses of stage-based fecundity,
mortality, and maturation rates of a population to change of tempera-
ture are approximated best at a scale longer than instantaneous. As
generation times of P. marinus are weeks, approximately 23 days at
20°C, while average stage-removal times (for maturation plus mortal-
ity) are days (Uye et al., 1983; Rajakaruna et al., 2012), we assume that
discretization of time by month or longer is a reasonable scale for the
vital rates to yield quantitative responses to the respective changes in

Table 1
Notations and equations.

Notation Description

n Vector of stage-abundance composition (numbers).
t Time (day).
T Ambient temperature (°C).
A Transition matrix with time-periodic coefficients .
k Number of sub-stages in each stage i; k=3 for P. marinus.
s Number of stages (12 for P. marinus after sub-stage N1 is dropped).
l Dimensions of matrix A; l=sk; also, l=k(s−1)−1 in the reduced matrix (see Appendix [B]).
j Denotes the time interval t t( − )jd j d( −1) , where d is the number of days in the interval; for e.g., if the interval j is a month, for j=1..m, s.t., m=12, then d=30 days

(approx.); and if the interval j is a season in a two-season year, then m=2, and d=180.5 days (approx.) if seasons are time-symmetric.
Aj Transition matrix of time interval j (month or season), assuming temperature Tj of the intervals are constants.
i Denotes any sub-stage of stage i.
tp Period (year): t t t= ∑ ( − )p j

m
jd j d=1 ( −1) t t= −md 0 (days), where tmd is the end time, and t0 is the initial time of the period.

μi Sub-stage mortality rate (per day) of stage i. Model generalized for all stages: μ κ κ T κ T= + +0 1 2 2, where κ0, κ1 and κ2 are parameters.
γi Sub-stage maturation rate (per day) of stage i: γ T α α= ( − 1) /( − )i

b i i−1 , where αi for i=0:13 with α = 00 are temperature–independent coefficients and parameter

b=1.8 for P. marinus.
σ μ γ= +i i i Total removal rate of individuals (per day) from a sub-stage of stage i.

βs Average number of eggs produced by a female (per day) in adult stage s: β b T b b= exp(−( − ) / )s 0 1 2 2 , where b0, b1 and b2 are parameters.

q Proportion of ovigerous females in the adult population.
(λj ,vj) Dominant eigen-pair of Aj for j=1..m: λj is the intrinsic growth rate (number per interval j) at constant temperature Tj; and vj is the eigenvector corresponds to the

eigenvalue λj .

n(t0) Vector of stage-abundance composition (numbers) at initial time t0; n(t0)=N0v0, where N0 is the initial population abundance; s.t., N0=||n(t0)||.
Nm Population abundance at interval j=m; Nm=||n(tm)||; where m is the last interval of the year (period).
V A measure of the time-averaged variation in the stage-structure through the year: V t v v= (1/ ) ∑ log( , )p j

m
j j=1 −1 ≤0.

λ Time-averaged piecewise intrinsic growth rates (number per interval):λ t λ t t= (1/ ) ∑ ( − )p j
m

j jd j d=1 ( −1) .

gj Mean sub-stage removal time (days) in interval j (month or season). That is, the average of σ1/ i of the sub-stages of stage i in interval j, where σ μ γ= +i i i for each

sub-stage in stage i, except for the last sub-stage in last stage k(s−1)+1, where σ μ=i i .

Pj Proportion of the number of sub-stages removed within the interval j (month or season) at constant temperature Tj, to the total number of sub-stages removed

within the whole year:
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟P = / ∑j

t jd t j d
gj j

m tjd t j d
gj

− ( −1)
=1

− ( −1)
;

R j0,
Net reproductive rate (number) at interval j (month or season) corresponds to constant temperature Tj:

⎛
⎝⎜

⎞
⎠⎟R = ∏j

qβs j
μj i

s γi j
γi j μj

k

0,
,

=1
−1 ,

, +
;

gp
Average sub-stage removal time (days) of the population over the year (period):

⎛
⎝⎜

⎞
⎠⎟g t= / ∑p p j

m tjd t j d
gj=1

− ( −1)
;

Rp

Weighted periodic (yearly) net reproductive rate (number per year):

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟R P R g V= ∑ +p j

m
j j l

p

l

=1 0,

1
. Here, l=k(s-1)+1.

Λp
An approximation to the maximal Lyapunov (Floquet) exponent (number per year): λ VΛ = +p , also written as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟RΛ = − 1p gp

pl
1

1
, where l=k(s-1)+1.

Tj Temperature (°C) at intervals j: T B Β πt t B= + sin(2 / + )j 1 p0 2 ; where B0, B1 and B2 are parameters.

H. Rajakaruna, M. Lewis Journal of Theoretical Biology 419 (2017) 77–89

79



temperature. Discretization of time by intervals, as large as months, for
P. marinus is also justified on an empirical basis, as vital rate
parameters, which we used for predicting their geographic distribution,
have been estimated with the data from populations tested at different
constant temperatures over time, but at changing temperatures (Uye
et al., 1983; Rajakaruna et al., 2012).

We assume that A(T(t)) can be approximated by constant matrices
Aj, for j=1,..,m, such that j corresponds to the interval (tjd-t(j−1)d),
where d is the number of days of the interval, t0 is the initial time, and
tmd is the end time of a period (year=md days). This assumption is on
the basis that the system in mean temperature Tj, at interval j, for
j=1,..m, is sufficiently long enough so as to allow the population to
achieve a stable-stage distribution within that interval, as characterized
by the eigen function associated with the dominant eigenvalue of Aj.
Note that, for example, m=12 in the case of time discretized by months
j; for j=1..12, over a year, such that d is approximately 30 days, and
m=2 in the case of time discretized by two seasons j; for j=1,2, over a
year, such that d is approximately 182.5 days assuming time-symme-
try. As monthly mean sea temperatures have smooth transitions from
one month to another across the period, we assume that change of
stable-stage distributions of P. marinus also may follow smooth
transitions without drastic changes in response to change in monthly
mean temperatures.

We denote the starting stage-abundance distribution by n(t0)
(numbers) at time t0 (day) of an year. Thus, based on Eq. (1), we
can write the population at the end of the given year, with period tp, as,

⎛
⎝⎜

⎞
⎠⎟∏t t t t t tn n A n( + ) = ( ) = exp(( − ) ) ( ),p md j

m
jd j d j0 =1 ( −1) 0

(2)

where exp denotes the matrix exponentiation, and
t t t= ∑ ( − )p j

m
jd j d=1 ( −1) t t= −md 0 (days). The Lefkovitch matrix Aj has

a complete set of eigenvectors and a dominant eigenvalue with a
corresponding eigenvector that has non-negative entries (Lefkovitch,
1965). If the intervals (tjd-t(j−1)d)'s are spaced sufficiently, such that
one or more generations are produced during the interval, which can be
a month or a season in our calibrations, then it is reasonable to assume
that t t t t t λ t tn A n n v v( ) = exp(( − ) ) ( ) ≈ ( ( ), )exp( ( − ))jd jd j d j j d j d j j jd j d j( −1) ( −1) ( −1) ( −1) .
Here, (a,b) denotes the dot product of vectors a and b, and (λj, vj) is
the dominant eigen-pair of Aj for j=1..m. Each eigenvector is normal-
ized such that (vj,vj)=1. The above assumption is justified for P.
marinus, as we will see that their sub-stage generation times are
generally shorter than a month in our estimations (Uye et al., 1983;
Rajakaruna et al., 2012). Applying the above recursively from t0 to tmd

yields t N λ t t Nn v v v v v v( ) = ( , )... ( , ) exp ∑ ( − ) =md m m m j
m

j jd j d md m0 0 1 −1 =1 ( −1) .
Here, v0 describes the initial composition of the population, so that,
n(t0)=N0v0, where N0=||n(t0)||. Here, Nmd=||n(tmd)||, and n(tmd)
=Nmdvm. Taking the inner product of this equation with
vm yields N N λ t tv v v v= ( , )... ( , )exp ∑ ( − )md m m j

m
j jd j d0 0 1 −1 =1 ( −1) , where

Nmd=(n(tmd),vm), and N0=(n(t0),v0). Hence, we can define the average
growth rate (number) per period (year), t N NΛ = (1/ )log( / )p p md 0 , as

λ VΛ = +p (3)

where, λ t λ t t= (1/ ) ∑ ( − )p j
m

j jd j d=1 ( −1) is the time-averaged piecewise
intrinsic growth rates, λ (number per interval; month or season),
and, V t v v= (1/ ) ∑ log( , )p j

m
j j=1 −1 , which is ≤0, is a measure (number) of

the time-averaged variation in the stage-structure through the year.
The Λp gives an approximation to the maximal Lyapunov (Floquet)
exponent. Therefore, in general, we can write an approximate condition
for population persistence in this periodic system as Λ > 0p . Thus, Λp

can be interpreted as an approximate yearly (periodic) intrinsic
growth rate of the population, or the yearly fitness parameter of the
population in a yearly fluctuating temperature environment. The λ,
given by the average temperature of the year, is a special case of Λp, as
Λp approximates λ when amplitude tends to zero.

To analyze the conditions by which Λp holds true, biologically, and

for further biological insights into temperature-time profile driven
colonization dynamics, we derive a weighted yearly (periodic) net
reproductive rate Rp (number per year), based on Λp (Eq. [3]), given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟∑R P R g V= + ,p j

m
j j l

p

l

=1 0,

1

(4)

such that,
⎛
⎝⎜

⎞
⎠⎟g RΛ = (1/ ) − 1p p pl

1
for a population in a habitat with

periodically fluctuating temperature (see Appendix [C] for derivation).

Here,
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟P = / ∑j

t t
g j

m t t
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−
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j

jd j d

j

( −1) ( −1) is the proportion of the number

of sub-stages removed within the interval j, i.e., t t( − )jd j d( −1) , which can
be for e.g., a month or a season, at constant (or mean) temperature Tj
of the interval, to the total number of sub-stages removed within the
year. Here gj is the mean sub-stage removal time in interval j, that is,
the average of σ1/ i of the sub-stages in interval j, where σ μ γ= +i i i for
each sub-stage in stage i, except for the last sub-stage in last stage

k(s−1)+1, where σ μ=i i. Here, l=k(s-1)+1,
⎛
⎝⎜

⎞
⎠⎟R = ∏j

qβ

μ i
s γ

γ μ

k

0, =1
−1

+
s j

j

i j

i j j

, ,

,
is

the net reproductive rate over the interval j associated with matrix Aj,
and gp is the average sub-stage removal time of the population over the

year (period), that is,
⎛
⎝⎜

⎞
⎠⎟g t= / ∑p p j

m t t
g=1

−jd j d

j

( −1) . Population persists if

R > 1p , following Λ > 0p .
Although there is no computational advantage of using Rp over Λp,

in general, when V=0, as was the case for P. marinus,
⎛
⎝
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⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟R P R= ∑p j

m
j j

l

=1 0,
l
1

, which is an explicit function of temperature-

dependent biological parameters μ, γi and βs at given piece-wise
constant (or mean) temperatures (Tj) of intervals j, month or a season,
over the period (year). The Rp can be interpreted as the number of
offspring at an end of a periodic cycle, through generations of females
starting from an ovigerous female at the begging of the cycle. The R0,
given by the average temperature of the year, is a special case of Rp, as
Rp approximates R0 when amplitude tends to zero. Here, Pj can be
used to analyze the effect of time-asymmetric periodic fluctuations of
temperature also, and in any scales of time-discretization, on Rp, as
long as they are biologically justified. It gives that the general condition
for Rp, and therefore, Λp, to exist in a biologically meaningful way, is gj
< t t( , )jd j d( −1) . The smaller the average stage-removal time (gj) compared
to the length which the population is in interval j, i.e., t t( , )jd j d( −1) , the
better is the approximation as a general theory. This also suggests that
for species having longer gj require lager discretized intervals for both
Rp and Λp to make sense.

Furthermore, for e.g., for a simple case, in which for a population to
persist a periodic two-season environment (m=2); one favorable
(R > 10,1 ) and the other unfavorable (R < 10,2 ); it follows from Rp (for

V=0) that
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟R P R P( − 1) > (1 − )0,1 1 0,2 2

l l
1 1

, that the product of the
geometric mean of R0 per stage above 1 individual, and the average
number of stages removed in the favorable season, should be greater
than the product of the geometric mean of R0 per stage below 1
individual, and the average number of stages removed in the unfavor-
able season. Fig. 1 shows the theoretical basis of the reduction in

VΛ ( = 0)p with respect to an increase in the amplitude of two-season
periodic temperatures on the basis of Jensen's (1906) inequality. This
reduction is generally true for both VΛ ( = 0)p and R V( = 0)p if λ is a
concave function of temperature T.

3. Calibrations, test of approximations, and results

3.1. Calibration of parameters

We parameterized fecundity and mortality rate functions for P.
marinus by data reconstructed from Liang and Uye (1997a) and
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Rajakaruna et al. (2012), respectively, minimizing the sum of squared
residuals using fminsearch (MLE) procedure in Matlab. The Gaussian
fecundity rate function, transformed from the statistical model in
(Fig. 2A), is given by β T= 13.6 exp[−( − 22.51) /80.33]s

2 with R2

=0.96. The quadratic mortality rate function is given by
μ T T= 0.508 − 0.067 + 0.0025 2 with R2=0.64 (Fig. [2B]). We used the
maturation rate model γ T α α= 3( − 1) /( − )i i i

1.8
−1 , estimated for P.

marinus for sub-stages of stage i, where αi values were [55.01,
134.21, 325.81, 557.4, 864.01, 1110.77, 1479.68, 1827.22, 2159.64,
2656.81, 3353.02, 4321.76] for i=1..12, and α = 00 , from Rajakaruna

et al. (2012) (Fig. [2C]). These compartmental models allowed us to
calculate the matrix Aj for any given piecewise constant temperatures
Tj at months j, for j=1..12. The data of P. marinus come from both
laboratory and field experiments, conducted at different fixed tempera-
tures (see Rajakaruna et al. (2012) for details).

3.2. Test of approximations

To investigate model-approximations empirically, and predict poten-
tially invasible habitats of P. marinus, we used long-term monthly mean
sea surface temperature (SST) data from 1971 to 2000 at 10×10 latitudinal
and longitudinal resolution via satellite from NOAA-ESRL (n.d.). For 100
randomly selected 10×10 resolution marine plots, we computed Λp (for
V≠0) from Eq. (3) via λ v( , )j j using Matlab function eig() based on
parameterized Aj for SST data at monthly intervals j, for j=1..12. This Λp

is numerically equivalent to the maximal Lyapunov (Floquet) exponent
given by log(max(real(eig(expm(A1) expm(A2).. expm(A12))))/12 in
Matlab following Gökçek (2004). We compared Λp (for V≠0), statistically,
with maximal Lyapunov (Floquet) exponent Λp computed via monodromy
matrix, M, for A in Eq. (1), denoted by Λ (M)p , for the same data, using
Runge-Kutta scheme 2 given by Wang and Hale (2001) at 0.01 day
intervals, as per their recommendation. This is to test the effect of scale
of discretization of Λp , given that in both cases the responses of vital rates
to temperature were modeled at the scale of monthly mean temperatures.
The metric Λ (M)p is given by log(max(real(eig(M)))/12 in Matlab. (Fig.
3A) shows the differences (in Ai) and the correlation (in Aii) between Λp

from Eq. (3) for V≠0, and MΛ ( )p computed via monodromy matrix from
long-term monthly mean SST data of 100 randomly selected 10×10 marine
plots. The high R2 and gradient close to 1 suggest that the difference
between the two metrics is negligible. Therefore, the computation of Λp

using Eq. (3), with time discretized at monthly intervals, versus the
standard maximal Floquet exponent computed via monodromy matrix,
with time discretized at 0.01 day, has no empirical difference, given that in
both cases the quantitative response of parameters to temperatures are
modeled at monthly mean temperature scale.

We compared Λp (for V=0), statistically, with Λp (for V≠0) for the
same SST data to investigate if V=0 assumption in the derivation
of simplified Rp as a function of biologically explicit parameters from
Eq. (4). The function Λp (for V=0) is given by sum[max-
(real(eig(A1)))+max(real(eig(A2)))+…+max(real(eig(A12)))]/12 in
Matlab. (Fig. 3B) shows the differences (in Bi) and the correlation (in
Bii) between Λp from Eq. (3) for V≠0, and Λp for V=0 for the same SST

Fig. 1. The effect of increased amplitude of temperature on periodic intrinsic growth
rate Λp (V=0) from Eq. (3). Green curve indicates λ T( ), the intrinsic population growth

rate, which is a concave function of constant habitat temperatures T(t). Here,λ1 and λ2
correspond to piecewise constant temperatures T1 and T2, respectively, of two seasons of
the period tp, of temperature-time function (B: blue curve). We increase amplitude by
δT (R: red curve), while holding the mean habitat temperature the same. Arrows indicate
the direction of change of λ T( ) w.r.t. increase in temperature amplitude by δT . Here, blue

temperature profile yields λ λΛ = ( + )/2p
B

1 2 and the red temperature profile yields

λ δλ λ δλΛ = ( + + − )/2p
R

1 1 2 2 , resulting δλ δλΛ = Λ + ( − )/2p
R

p
B

1 2 . As δλ δλ>2 1 due to con-

cavity of λ T( ), we get Λ < Λp
R

p
B. Furthermore, λΛ <p

B
T , similarly. These show that the

higher the amplitude of periodic fluctuations, the lower is the Λp . The above result, which

is due to Jensen's inequality, holds true, universally across T(t), in general, if λ T( ) is a

concave function of T. The above results w.r.t. Rp vs. R0 also behave similarly as we show
that they are both functionally related to λ T( ).

Fig. 2. (A) Statistical model of log-fecundity rate per day, (B) mortality rate per day, and (C) sub-stage maturation rate (per day), based on αi values estimated by Rajakaruna et al.
(2012). Here, stages i=1..12 are E-eggs, N2,N3.. N6–naupli, C1.. C6–copepodite (C6-female adults), respectively. Dashed lines are 95% CI.
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data. The high R2 and gradient close to 1 suggest that the difference
between the two metrics is negligible. Thus, simplifying both Λp

assuming V=0 from Eq. (3) is empirically reasonable approximation
for P. marinus.

Furthermore, we compared Λp, computed via Rp (for V=0) from Eq.
(4), denoted by RΛ ( )p p , statistically, with Λp (for V≠0), to test the
assumption ξ d( ) ≈ 1 in the derivation of Rp (see Eq. [D2] in Appendix

[D]). We also computed the differences between the estimates of the
metrics for the same temperature-time profiles. (Fig. 3C) shows the
differences (in Ci) and the correlation (in Cii) between Λp from Eq. (3)
for V≠0, and Λp computed via Rp (Eq. [4]) for V=0, for the same SST
data. The high R2 and gradient close to 1 suggest that the difference
between the two metrics is negligible, especially where Λp is close to
zero. Thus, the averaging of stage-based removal times, that is, the

Fig. 3. (Ai) Difference between Λp (V≠0) from Eq. (3) and Λp (via M: Monodromy Matrix) estimated by long-term monthly mean SST of 100 random 10×10 marine plots from NOAA-
ESRL (n.d.). (Bi) Difference between Λp (V=0) and Λp (V≠0) both from Eq. (3) estimated for the same SST data. (Ci) Difference between Λp (via Rp) from Eq. (4) with V=0, and Λp (V≠0)
from Eq. (3) estimated for the same SST data. (Aii, Bii, Cii) All regressions yielded R2=0.99 and gradient=1.0.

Fig. 4. Yearly intrinsic growth rate Λp, given by the colour scheme, estimated for P. marinus, based on long-term monthly mean SST data at 10×10 spatial resolution from NOAA-ESRL
(n.d.). Red circles show habitats, which P. marinus are native to (Walter, 1986) –surrounding the Sea of Japan. Purple circles are habitats where P. marinus was detected (Olazabal and
Tirelli, 2011; Brylinski et al., 2012; Jha et al., 2013; Sabia et al. 2015). The regions, where Λp > 0, indicate the potentially invasible habitats with respect to temperature, and the regions,
where Λp < 0, are those non-invasible. The greater is the Λp, the higher is the yearly (periodic) fitness, or the potential invasibility (Fig. [6]). References of labels are as same as in Fig. 6.
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assumption ξ d( ) ≈ 1 (in Eq. D2 in Appendix [D]) in the derivation of
Rp, is a reasonable approximation for P. marinus. The assumption that
ξ d( ) ≈ 1, together with V=0, therefore, suggests that Rp computed from
Eq. (4) for V=0 is a reasonable approximation to evaluate and interpret
the persistence and the growth of a population of P. marinus.

3.3. Predicted geographic distribution of P.marinus

We mapped out the potentially invasible marine habitats, i.e.,
isolating the temperature-time profiles, in Fig. 4, assuming other
conditions, which are unknown, are suitable for P. marinus, at 10×10

resolution SST data given at long-term monthly means from NOAA-
ESRL (n.d.), on the basis of Λp (Eq. [3]). We located the occurrences of
P. marinus from the literature. The species occurrences detected,
indicate that the direction of spread of P. marinus on a global scale
is generally from native habitats with low Λp to colonized habitats with
high Λp, consistent with the model prediction.

3.4. Approximation of periodic ambient temperature

Firstly, we tested how well long-term monthly mean SST data of 10×10

marine plots fit to a sinusoidal function T B Β πt t B= + sin(2 / + )j 1 p0 2 , for
j=1,..,12 with period tp=12 months, by minimizing the sum of squared
residuals using fminsearch function in Matlab, to investigate the effect of
the amplitude of temperature-time profiles on periodic fitness. Here, B0B1
and B2 are the average, amplitude and phase-shift of temperature,
respectively. The goodness-of-fit, R2, given for the data of each 10×10

marine plot from NOAA-ESRL (n.d.), averaged over each latitude (+90 –
northern, to −90 – southern), is given in (Fig. 5A). The high R2 were
yielded for sub-tropical and temperate latitudes, indicating that sinusoidal
function gives a good approximation to the long-term monthly mean SST
data over yearly periods, where amplitudes are large, for generalization.
Estimations of low R2 at low- and high-latitude regions are due to small
fluctuations of monthly mean temperatures around the yearly average that
fail to form distinct sinusoidal patterns. Thus, both in cold-water seas,
where periods are time-asymmetric, and tropical seas, the amplitudes are
negligible.

We compared Λp (Eq. (3)), given by long-term monthly mean
temperatures of 100 randomly selected 10×10 resolution marine plots,
statistically, with Λp given by the sinusoidal functions fitted to the same
data (Fig. (5B)). The high R2 and gradient close to 1.0 suggest that
difference between Λp, computed by monthly mean SST, and that
computed via sinusoidal functions fitted to the same monthly data, is
negligible. Thus, examining the effect of temperature-time profiles of
habitats, in terms of means and amplitudes of sinusoidal functions with

a period of year, on colonization dynamics, is a reasonable general-
ization to understand the full system.

3.5. Effect of amplitude on fitness

As the sinusoidal approximation is a good fit to monthly tempera-
ture data, to test the effect of amplitude of temperature on periodic
fitness, we simulated Λp and Rp, both, with respect to a range of B0 and
B1 of temperature-time profiles, using sinusoidal functions. Here, we
set B2=0 as phase-shift has no weight on the metric by theory. (Fig. 6A)
shows the periodic fitness simulated for different means and ampli-
tudes of habitat temperatures, using the sinusoidal function of monthly
mean temperatures, with a period of year, with the approximation that
fluctuations are symmetric, and where asymmetric, the amplitudes are
negligible (as in (Fig. 5A)). The larger the amplitude, the lower is the
periodic fitness of P. marinus for a given yearly mean temperature. An
increase in the amplitude narrows-down the range of mean habitat
temperatures that the species can persist. The native habitat range of
the species is generally at high-amplitude temperature regions, result-
ing in low-fitness, compared to their colonized habitat range, which is
generally at low-amplitude temperature regions, yielding greater
fitness, within a finite range of yearly mean temperatures (Fig. (6B)).

3.6. Locality-specific population dynamics

(Fig. 7A) shows the sinusoidal temperature-time profile at Fukuyama
harbor, modeled on the basis of the data from Kasahara et al. (1975). (Fig.
7B) shows the related cyclic growth dynamics of a P. marinus population,
with an introduction of a single female, predicted by the calibrated model
(Eq. (1)). The associated eigenvalues (real part) of stage-classes are shown
in (Fig. 7C), and the stage-abundances are shown in (Fig. 7D). Here, we
simulated the population dynamics at day's scale, assuming that each
month has 30 days. We noted that the dominant stage-class was the naupli,
in general, and the naupli stage IV in particular. The peak population
abundance (in Fig. (7B)), and the dominant stages (in Fig. (7D)) are good
qualitative matches compared with the data shown in Liang and Uye
(1997a) for P. marinus at the same harbor.

4. Conclusions

Our study suggests that, the larger the amplitude of periodic
(yearly) fluctuations of monthly (or seasonal) temperatures, or the
yearly temperature cycles, the lower is the fitness, or the yearly
(periodic) intrinsic growth rates, of P. marinus populations, vice versa,
given that yearly mean temperatures and other environmental and

Fig. 5. (A) Goodness-of-fit R2, averaged by latitude, for the sinusoidal functions fitted to long-term monthly mean sea surface temperature (SST) data of each 10×10 marine plot from
NOAA-ESRL (n.d.). Bars represent the standard deviations. (B) Regression of Λp (V=0) from Eq. (3), computed based on long-term monthly mean SST data, vs. Λp (V=0), computed
based on the fitted sinusoidal functions to the same data; for 100 randomly selected 10×10 marine plots. Regression yielded R2=0.99 and gradient=1.0.
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ecological factors are constant. Thus, P. marinus populations migrating
from habitats with high amplitude temperatures to that with low
amplitudes, having similar other conditions, can potentially increase
their yearly (periodic) fitness, substantially, exploiting the existing
temperature amplitude gradient, and increasing their colonization
potential. We showed that the process, by which this is mechanized,
is that populations migrating from high- to low-amplitude yearly
fluctuations will potentially produce greater number of offspring at
the end of the periodic cycle through generations of females of an
ovigerous female at the beginning of the periodic cycle. For this theory
to be valid, we showed that the average stage-removal times (by
maturation and mortality) have to be less than the lengths of time
that a population stays in the given changes of temperature in
discretized time-intervals. Hence, the impact of the amplitude of yearly
temperature on fitness, which we theorize here, can be generally true
for fast-maturing calanoid copepods, having shorter generation times,
and having dependencies of vital rates on temperature similar to that of
P. marinus. A large volume of literature indicates that these structural

and functional relationships are generalizable to calanoid copepods:
stage-structure (Mauchline and Mauchline, 1998); mortality rates
(Hirst and Kiørboe, 2002; Bunker and Hirst, 2004); generation times
(Huntley and Lopez, 1992); Gaussian type fecundity rates (for e.g.,
Uye, 1981; Sullivan and McManus, 1986; Saiz et al., 1999; Halsband-
Lenk et al., 2002; Gislason, 2005; Holste and Peck, 2006; Kang et al.,
2011); generalizations of vital rates for ectotherms (Amarasekare and
Savage, 2011). Hence, this suggests that this phenomena we observed
pertaining to P. marinus may be generalizable to similar other
copepods. The potential geographic distribution, predicted by our
metrics, on the basis of fitness given by the habitat temperature-time
profiles, matched the field evidence of the species’ occurrences, in
general. This may suggest that P. marinus colonized low amplitude
periodic (yearly) temperature habitats, such as the west coasts of North
America, migrating from high amplitude periodic temperature native
habitats surrounding the Sea of Japan, within a range of optimal yearly
mean temperatures.

Of course, the demonstrated species spread was regardless of the
fact that other environmental and ecological factors, such as salinity,
species interactions, available niches, resource (food) limitations, Allee
effects and so on, also could further limit their fitness and spread in the
potentially invasible geographic range predicted by our metrics, isolat-
ing habitat temperature-time profiles, and assuming fixed optimal
conditions of other factors. As there are multiple attributes to errors
in the estimations and approximations; vital rates, temperatures,
scaling, averaging of variations, influence of other biological and
environmental factors, confounding effects due to interactions, and
so on; a bloated confidence interval of the predicted range and the
fitness could be a result, whereas our data were not sufficient to
compute those fully. However, the range, outside the potentially
colonizable range predicted by our metrics, limits growth due to
temperature-profile dependent dynamics alone, regardless of how
favorable those habitats are to other growth-affecting factors.

Our result that high amplitude periodic temperature lowers the
population fitness, or their colonization potential, is also consistent
with the broad stochastic theory, which suggests that increased
environmental fluctuations, commonly computed at high frequencies,
increase the extinction probability of local populations, in general
(Lande et al., 2003). Hence, the range of habitats that are tolerable to
the species, especially those in the temperate regions, could be
narrowed-down, when periodic fluctuations of temperature are also
taken into account, compared to the tolerable range predicted by the
mean habitat temperatures alone (as in Strasser et al. (2011),
Amarasekare and Savage (2011) and Rajakaruna et al. (2012)). This
also falls in line with the theoretical arguments behind Savage (2004),
as we stated earlier. Furthermore, our dynamical results are also
consistent with Amarasekare and Coutinho (2013), who have shown
that seasonal temperature variation allows populations to converge to a
stationary stage distribution.

Bacaër (2012) defined a net reproductive rate in a variable
environment as the asymptotic ratio of the total births in two
successive generations of the family tree. For theoretical interest, the
persistence condition based on our Rp can be interpreted in many ways.
In essence, Rp is a weighted net reproductive rate, which is a measure
of the periodic reproductive rate of a population subject to periodic
external forcing cycles. Metric Rp determines the system stability, and
the growth of a population across the periodic temperature fluctua-
tions, in a biologically meaningful way, capturing the system function-
ality and transitions at the level of sub-stages of a population by
geometrically averaging the weighted R0's at piecewise temperatures in
discretized times over an entire period. However, if our interest is only
the population stability condition for a given habitat temperature-time
profile, then maximal Floquet exponent, calculated based on time-
averaged population matrix over a period, may suffice to evaluate the
periodic persistence (Ma and Ma, 2006; Wesley and Allen, 2009).

As epipelagic species are more vulnerable to be transported via

Fig. 6. (A) Yearly intrinsic growth rate Λp of P. marinus simulated for ranges of mean
and amplitude of habitat temperatures on the basis of temperature-time sinusoidal
functions. (B) Weighted net reproductive rate Rp of P marinus simulated with respect to
the same mean and amplitudes of temperature-time profiles. Non-autonomous (i.e.,
amplitude > 0) solutions of both Λp and Rp converge to autonomous (i.e., amplitude=0)
solutions when amplitude tends to zero. Red circles show the native habitats surrounding
the Sea of Japan (Walter, 1986), and purple circles show the habitats where P. marinus
was detected (Olazabal and Tirelli, 2011; Brylinski et al., 2012; Jha et al., 2013; Sabia
et al. 2015). Here, Rp > 1 and Λp > 0 are the range potentially invasible (or colonizable) to
P. marinus, and Rp < 1 and Λp < 0 are the range non-invasible. The larger is the
amplitude, the lesser is the periodic fitness, and the narrower is the range of mean
temperatures of habitats invasible. [References: see Rajakaruna et al. (2012): (A) West
coast of Hokkaido, Japan, Sato (1913), Sato Anraku (1953), Walter (1986b); (B) Yellow
sea & East China sea, Qing-Chao and Shu-Zhen (1965); (C) Andaman Islands (Pillai,
1980); (D) Mauritius (Grindley and Grice, 1969); (E) Moreton Bay, Queensland
(Greenwood, 1977); (F) Patagonian Waters, Southern Chile (Jones, 1966; Grindley
and Grice, 1969) from Hirakawa (1986); (G) Oahu, Hawaii (Jones, 1966) (Carlton,
1985); (H) San Francisco Bay, California (Ruiz et al., 2000); (I) Peter the Great Bay
(Brodsky, 1948, 1950); (J) Korea sea (Chiba, 1956; Tanaka, 1966, Tanaka and Huee,
1966), Walter, 1986b); (K) Korea sea, Brodsky (1948, 1950); (L) Elliot Bay, Puget Sound,
Washington (Cohen, 2004), USGS; (M) San Diego Bay (USGS); (N) Off-Taiwan (Shen
and Lee, 1963). (O) Todos Santos bay, Baja Cal (Jimenez-Perez and Castro-Longoria,
2006); (P) Tokyo bay (Tachibana et al., 2013); (Q) Chikugo river estuary (Suzuki et al.,
2011); (R) Adriatic sea-Italy (Olazabal and Tirelli, 2011); (S) Lake Faro-North eastern
Sicily (Sabia et al., 2012); (T) Gironde estuary, France (Jha et al., 2013); (U) Bay of
Biscay, France (Brylinski et al., 2013).] Locality specific temperature-time data profiles
are from the literature cited, or where not, from ESRL-NOAA (n.d.). [Temperature
(mean, 2x amplitude): NOAA-ESRL: (A) 10.92,16.65; (B) 180.15, 17.8; (C) 28.63, 2.16;
(D) 25,88, 4.39; (E) 22.40, 5.5; (F) 10.02, 3.80; (G) 24.52, 3.9; (H) 12.74,2.69; (I) 9.08,
7.5; (J, K) 12.95, 17.14 (L) 10.71, 6.59;(M) 17.05,5.32; (N) 24.58, 8.28; (O) 180.64,7.28
(Jimenez-Perez and Castro-Longoria, 2006); (P)180.75,20.03 (Tachibana et al., 2013);
(Q) 180.5, 21.00 (Suzuki et al., 2012); (R) 17.32, 15.39 (Olazabal and Tirelli, 2011); (S)
14.72, 11.56 (Sabia et al., 2012); (T) 12,28, 9.42 (Jha et al., 2013); (U) 15,89,9.53
(Brylinski et al., 2013).].
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ballast water, and be discharged into new habitats, there is a possibility
that gradient in the degree of amplitudes among habitats in a region
can play a major role in colonization and invasion of such fast-
maturing species transported via ship ballast water. Thus, our theory
may suggest that northern temperate marine ecoregions, such as, the
Seas of Japan, China, Black, Caspian and Mediterranean, and
Virginian, and so on, where the amplitudes of periodic (yearly)
temperature are comparatively large (NOAA-ESRL), can be potential
sources of copepods, and similar species, becoming invasive in
potential sinks at low-amplitude temperature, in temperate regions,
such as, the west coast of North America and the east coast of North
Atlantic and so on, which are in close physical proximity, and also
within a narrow range of yearly mean temperatures. Yet, of course the
other factors can also vary drastically across these regions, both
enhancing and lowering the temperature-amplitude-dependent advan-
tage of the colonizing copepod species. However, supporting the
temperature-amplitude-driven invasiveness proposition, we find evi-
dence that eight invasive copepod species native to the coast of Japan
have invaded San Francisco Bay and adjacent west coast of North
America (Cordell et al., 2008), which have a steep amplitude gradient,
high to low from the former to the latter, while their yearly average
temperatures are similar. These species include two species of the same
genus of P. marinus, namely, P. inopinus and P. forbesi. In contrast,
there are no reports to date, which indicate that copepods native to the
west coast of North America invaded the Sea of Japan or adjacent seas.
In due course, invasive P. inopinus has become the dominant species at
Columbia River estuary (Cordell et al., 1992), whereas P. forbesi has

replaced some of the native species in the new habitats (Bollens et al.,
2012) demonstrating their colonization potential.

We investigated the effect of yearly fluctuations of monthly mean
temperatures on the stability and the growth of P. marinus popula-
tions, assuming that their stage-based vital rates, such as, fecundity,
maturation and mortality, respond quantitatively to changes in
monthly mean temperatures, but for smaller time-scales or instanta-
neous fluctuations. Yet, high frequency fluctuations (e.g., within a
month) can have a dampening effect on the trends in fitness that we
have observed at low frequencies (at monthly scale). As our estimations
of vital rate parameters, modeled as functions of temperature, were
made based on the data from experiments conducted at constant (or
fixed levels of) temperatures over time, we may need to test the exact
scales at which those parameters, and also growth rates, in general,
respond quantitatively to the changes in temperature, to understand
the full system.

Furthermore, calanoid copepods generally colonize the top water
column (Bradford-Grieve, 2002). It has also been known that some
copepod species migrate vertically on a diurnal basis, while some
others maintain a vertical zonation. For species migrating to lower
depths diurnally, the metabolically active zone can still be the near-
surface layer: about 5.4% of their energy is expended while they are at
lower depths (Calanus euxinus, Svetlichny et al., 2000). This suggests
that, for such species, it may be the near-surface temperatures that
affect more on the day-to-day metabolism. However, we used SST data,
which generally represent the top 10 m of the sea or less, for predicting
the potential geographic distribution of P. marinus. If diurnal vertical

Fig. 7. Population dynamics of P. marinus, modeled with respect to temperature-time profile at Fukuyama harbor (Kasahara et al., 1975; Uye et al. 1982), starting with a single female
at the beginning of November, simulated at day's scale, assuming each month has 30 days, based on the calibrated model Eq.(1). Here, for e.g., CVI-1,2 are the sub-stages 1 and 2 of
copepodite stage CVI (the adult female stage). The dominant eigenvalue corresponds to the female-adult sub-stage CVI-3. The dominant stage-class becomes the naupli once the
population reached a stable-stage distribution in periodically (yearly) changing temperatures. This theoretical result closely matches the dynamics observed for P. marinus in Liang and
Uye (1997a) at the same harbor. Panel (D) and (Fig. 2C) may suggest that the daily rate of maturation (transition) of eggs into naupli is substantially faster than the rate of the
production of eggs and the rate of maturation of naupli into copepodite.
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migration results in daily exposure of individuals to waters at different
temperatures, creating an effect similar to experiencing high frequency
temperature fluctuations, then incorporating these variations can
reduce the effect of yearly amplitude of temperature that we demon-
strated here on the stability and the growth of a population.

If the amplitudes of periodic (yearly) SST fluctuations increase
along with the gradual sea warming (see Masson and Cummins
(2007)); as it can be observed in Race Rocks data, slightly (DFO
Canada); our theory suggests that we could expect those to suppress
the effect of increased mean habitat temperatures on the range
expansion of the species. Thus, studying the changes in the whole
temperature-time profile over time, at appropriate temporal and spatial
scales, may be crucial when calibrating the effect of global warming on
species range expansion, as they can create differential effects on
population stability, counteracting the positive forces created on them

by the general rise in the mean SST. This hypothesis also agrees with
the theory by Savage (2004).

An extension to this study is to investigate how different frequen-
cies in temperature impact the fitness.
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Appendix A. Life history diagram

see Fig. A1.

Appendix B. Matrix reduction

The system Eq. (1) is dynamically equivalent to a slightly simpler version, where the sub-stages of the last stage are lumped together, so that, the
last two columns and rows are removed, and the remaining σs is replaced by μs. This is because the sub-stages of the last stage are functionally
indistinguishable as there is no further transition of the population to another stage. Here, we drop the explicit dependence of parameters on T for
notational simplicity. It yields, A, which has dimension lxl such that l=k(s−1)+1, and two sub-matrices: fecundity F, and transitions-mortality
(removal) L , after partitioning A, such that A=F-L .
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Appendix C. Weighted net reproductive rate Rp
Here, we drop the explicit dependence of parameters on T for notational simplicity. If we consider temperature T to be constant, then the net

reproductive rate R0 is given by ρ FL[ ]−1 , where ρ is the spectral radius of the next generation matrix FL−1 (Appendix [B]), that is, ρ RFV[ ] = max
i n

i
−1

1≤ ≤
0 ,

where R R R, ... n01 02 0 are the eigenvalues of the square matrix FV−1; the maximum real eigenvalue of the square matrix FL−1 (Rajakaruna et al., 2012).
It yields
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(C1)

for a population in constant temperature T (Rajakaruna et al., 2012). We define R j0, , λj and gj to be the net reproductive rate, intrinsic growth rate,
and mean sub-stage removal time, respectively, for temperature corresponding to time-interval j, for e.g., a month or a season, that is t t( , )jd j d( −1) ,
associated with matrix Aj given for the interval j, where d is the number of days in the interval. From Eq. [D4] in Appendix [D], we can write the
explicit functional relationship between R0,j and intrinsic growth rate λj at time interval j as
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μ1 μs-1 μsμsμsμ2μ2μ1μ1

γsγsγs-1γ2γ2γ1γ1γ1 ns,3…n2,2n2,1 ns,2n1,3n1,2n1,1 ns,1ns-1,3

qβs qβs qβs

Fig. A1. Life history diagram of P. marinus. Here, μi are mortality rates, and γi are maturation rates of each 3 sub-stages of stage i. Furthermore, βs is fecundity rate, and q is a constant,

the proportion of ovigerous females in sub-stages of adult stage (s=12). Here, ni,k are the population abundance in each sub-stage k in stage i.
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We substitute R j0, from Eq. (C1) in Eq. (C2), and then λj from Eq. (C2) in λ VΛ = +p (Eq. [3]), such that λ λ t t= ∑ ( − )
t j

m
j jd j d

1
=1 ( −1)

p and

V v v= ∑ log( , )
t j

m
j j

1
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p
, where tp is the period, and (λj,vj) is the dominant eigenpair of Aj for j=1..m, with eigenvector is normalized such that (vj,vj)

=1. It yields
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( −1) . Note that t G/p is the average sub-stage removal time of the population within the period, which, we denote by
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Thus, we define a weighted net reproductive rate as
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such that Eq. (C3) can be written as,
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Note that Eq. (D4) in Appendix (D) is a special case of Eq. (C5) for the case when temperature is constant throughout the period. When V=0,
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in Eq. (C4). That is, when V=0, the weighted cumulative effect of
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l
1

of the discretized states becomes a good approximation to

the final outcome of the system.
As the relationship between R0 and λ (Eq. D4) is nested within the relationship RP and Λp (Eq. C5) (for V=0), we expect Λp to be left-skewed

compared to RP for fixed amplitudes of temperature (see Fig. (6)). This is because 1/gp is a positive exponential function of temperature similar to 1/
g while RP is generally a concave function of temperature similar to R0. The R0 and λ peak at different temperatures, with former always on the left of
the latter. This has been observed in empirical data of many taxa by Huey and Berrigan (2001).

Appendix D. Explicit functional relationship between R0 and λ

The intrinsic growth rate of a population, which is the dominant eigenvalue given by the system Eq. (1), for population in constant temperature
environment, can be derived as a Lotka-Euler type equation solving the condition λF L Idet[( − ) − ] = 0, where I is the identity matrix, and λ are the
eigenvalues of the matrix F-L (Appendix [B]). One way to do this is to transform F-L into a triangular matrix using Gaussian elimination method,
and take the product of all the diagonal elements. It yields the following characteristic polynomial for λ,
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Because matrix A has a Lefkovitch form, we know that the spectral bound of A is the dominant eigenvalue (that is the one with the largest
spectral radius), and therefore, it is a real eigenvalue. This dominant eigenvalue is one of the l solutions to Eq. (D1). However, this is the only one of
our interest from an invasibility perspective. We use λ to denote the dominant eigenvalue, which is the intrinsic growth rate in the population at
constant temperature.

Dividing Eq. (C1) by Eq. (D1) and some manipulations yield a non-linear relationship between the net reproductive rate R0 and the dominant

eigenvalue λ, as
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. Recalling that σ γ μ= +i i i is the overall removal rate in sub-stages in stage i, and σ μ=s s is the removal

rate in the last sub-stage k of the stage i=s, we simplify the above equation as R g λ g λ= (1 + ) ∏ (1 + )s i
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0 =1
−1 . Here, g σ= 1/i i is the sub-stage removal

time in stage i after maturation and mortality rates are combined together.
We assume identical sub-stage removal times for P. marinus, and will test this assumption later. Near-isochronal development is shown in many

copepods at food saturation condition (Breteler et al., 1994), that is (gi=g for i=1..s). This gives,R gλ= (1 + )l
0 , where, l k s= ( − 1) + 1. Choosing
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Here, ξ h( ) is the error correction term given by
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−1 , the above gives ξ h( ) ≈ 1 to the leading order in hi

(This has also been tested in the methods section.) Thus, using the approximation ξ h( ) ≈ 1, Eq. (D2) can be written as
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R gλ= (1 + ) .l0 (D3)

Therefore, we can write Eq. (D3) as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟λ

g
R= 1 − 1 .l0

1

(D4)

This simple approximate relationship between λ and R0 is valid for populations in habitat temperatures T with negligible fluctuations. For
special cases of this relationship, read Wallinga and Lipsitch (2007).
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